Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart.
نویسندگان
چکیده
RATIONALE Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways controlling cardiac function and remodeling. OBJECTIVE To assess circadian changes in processes dependent on the protein phosphatase calcineurin, relative to changes in phosphorylation of cardiac proteins, in normal, hypertrophic, and failing hearts. METHODS AND RESULTS We found evidence of large circadian oscillations in calcineurin-dependent activities in the left ventricle of healthy C57BL/6 mice. Calcineurin-dependent transcript levels and nuclear occupancy of the NFAT (nuclear factor of activated T cells) regularly fluctuated as much as 20-fold over the course of a day, peaking in the morning when mice enter a period of rest. Phosphorylation of the protein phosphatase 1 inhibitor 1 (I-1), a direct calcineurin substrate, and phospholamban, an indirect target, oscillated directly out of phase with calcineurin-dependent signaling. Using a surgical model of cardiac pressure overload, we found that although calcineurin-dependent activities were markedly elevated, the circadian pattern of activation was maintained, whereas, oscillations in phospholamban and I-1 phosphorylation were lost. Changes in the expression of fetal gene markers of heart failure did not mirror the rhythm in calcineurin/NFAT activation, suggesting that these may not be direct transcriptional target genes. Cardiac function in mice subjected to pressure overload was significantly lower in the morning than in the evening when assessed by echocardiography. CONCLUSIONS Normal, opposing circadian oscillations in calcineurin-dependent activities and phosphorylation of proteins that regulate contractility are disrupted in heart failure.
منابع مشابه
FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases.
Insulin resistance and metabolic syndrome are rapidly expanding public health problems. Acting through the PI3K/Akt pathway, insulin and insulin-like growth factor-1 (IGF-1) inactivate FoxO transcription factors, a class of highly conserved proteins important in numerous physiological functions. However, even as FoxO is a downstream target of insulin, FoxO factors also control upstream signalin...
متن کاملDirect Transcriptional Control of a p38 MAPK Pathway by the Circadian Clock in Neurospora crassa
MAPK signal transduction pathways are important regulators of stress responses, cellular growth, and differentiation. In Neurospora, the circadian clock controls rhythms in phosphorylation of the p38-like MAPK (OS-2); however, the mechanism for this regulation is not known. We show that the WCC, a transcription factor and clock component, binds to the os-4 MAPKKK promoter in response to light a...
متن کاملCryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation
Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)-transcriptional repressors and components of the circadian clock. IGF-1 rhythms are ...
متن کاملInfluence of N-Phthaloyl GABA on the Circadian Rhythms of Lipid Peroxidation and Antioxidants in Wistar Rats under Constant Light
N-Phthaloyl GABA was administrated daily (50 mg/Kg body weight-i.p) to Wistar rats for 21 days and circadian rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were studied under constant light (LL) conditions. Delayed acrophase of TBARS and advanced acrophase of antioxidants (GSH, CAT and ...
متن کاملProtein kinase A, Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes.
Spatial and temporal resolution of intracellular signaling can be achieved by compartmentalizing transduction units. Myopodin is a dual-compartment, actin-bundling protein that shuttles between the nucleus and the Z-disc of myocytes in a differentiation- and stress-dependent fashion. Importin alpha binding and nuclear import of myopodin are regulated by serine/threonine phosphorylation-dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 108 4 شماره
صفحات -
تاریخ انتشار 2011